11 research outputs found

    Heterozygous rare genetic variants in non-syndromic early-onset obesity

    Get PDF
    BACKGROUND: Obesity is a very heterogeneous disorder at both the clinical and molecular levels and with high heritability. Several monogenic forms and genes with strong effects have been identified for non-syndromic severe obesity. Novel therapeutic interventions are in development for some genetic forms, emphasizing the importance of determining genetic contributions. OBJECTIVE: We aimed to define the contribution of rare single-nucleotide genetic variants (RSVs) in candidate genes to non-syndromic severe early-onset obesity (EOO; body mass index (BMI) >+3 standard deviation score, <3 years). METHODS: Using a pooled DNA-sequencing approach, we screened for RSVs in 15 obesity candidate genes in a series of 463 EOO patients and 480 controls. We also analysed exome data from 293 EOO patients from the "Viva la Familia" (VLF) study as a replication dataset. RESULTS:Likely or known pathogenic RSVs were identified in 23 patients (5.0%), with 7 of the 15 genes (BDNF, FTO, MC3R, MC4R, NEGR1, PPARG and SIM1) harbouring RSVs only in cases (3.67%) and none in controls. All were heterozygous changes, either de novo (one in BDNF) or inherited from obese parents (seven maternal, three paternal), and no individual carried more than one variant. Results were replicated in the VLF study, where 4.10% of probands carried RSVs in the overrepresented genes. RSVs in five genes were either absent (LEP) or more common in controls than in cases (ADRB3, LEPR, PCSK1 and PCSK2) in both obese datasets. CONCLUSIONS: Heterozygous RSVs in several candidate genes of the melanocortin pathway are found in ~5.0% patients with EOO. These results support the clinical utility of genetic testing to identify patients who might benefit from targeted therapeutic intervention.Clara Serra-Juhé, Gabriel Á. Martos-Moreno, Francesc Bou de Pieri, Raquel Flores, Julie A. Chowen, Luis A. Pérez-Jurado, Jesús Argent

    The methylation status of the embryonic limb skeletal progenitors determines their cell fate in chicken

    Get PDF
    Digits shape is sculpted by interdigital programmed cell death during limb development. Here, we show that DNA breakage in the periphery of 5-methylcytosine nuclei foci of interdigital precursors precedes cell death. These cells showed higher genome instability than the digit-forming precursors when exposed to X-ray irradiation or local bone morphogenetic protein (BMP) treatments. Regional but not global DNA methylation differences were found between both progenitors. DNA-Methyl-Transferases (DNMTs) including DNMT1, DNMT3B and, to a lesser extent, DNMT3A, exhibited well-defined expression patterns in regions destined to degenerate, as the interdigital tissue and the prospective joint regions. Dnmt3b functional experiments revealed an inverse regulation of cell death and cartilage differentiation, by transcriptional regulation of key genes including Sox9, Scleraxis, p21 and Bak1, via differential methylation of CpG islands across their promoters. Our findings point to a regulation of cell death versus chondrogenesis of limb skeletal precursors based on epigenetic mechanisms.We thank Prof. Miguel Lafarga for helpful comments and advice. We thank Dr Jose E Gomez-Arozamena for helping us with the irradiation experiments. We are grateful to Montse Fernandez Calderon, Susana Dawalibi, and Sonia Perez Mantecon, for excellent technical assistance. This work was supported by a Grant (BFU2017–84046-P) from the Spanish Science and Innovation Ministry to JAM. C.S.F is recipient of a FPI grant (BES-2015–074267)

    The complex SNP and CNV genetic architecture of the increased risk of congenital heart defects in Down syndrome

    No full text
    Congenital heart defect (CHD) occurs in 40% of Down syndrome (DS) cases. While carrying three copies of chromosome 21 increases the risk for CHD, trisomy 21 itself is not sufficient to cause CHD. Thus, additional genetic variation and/or environmental factors could contribute to the CHD risk. Here we report genomic variations that in oncert with trisomy 21, determine the risk for CHD in DS. This case-control GWAS includes 187 DS with CHD (AVSD = 69, ASD = 53, VSD = 65) as cases, and 151 DS without CHD as controls. Chromosome 21-specific association studies revealed rs2832616 and rs1943950 as CHD risk alleles (adjusted genotypic P-values &lt; 0.05). These signals were confirmed in a replication cohort of 92 DS-CHD cases and 80 DS-without CHD (nominal P-value 0.0022). Furthermore, CNV analyses using a customized chromosome 21 aCGH of 135K probes in 55 DS-AVSD and 53 DS-without CHD revealed three CNV regions associated with AVSD risk (FDR ≤ 0.05). Two of these regions that are located within the previously identified CHD region on chromosome 21 were further confirmed in a replication study of 49 DS-AVSD and 45 DS- without CHD (FDR ≤ 0.05). One of these CNVs maps near the RIPK4 gene, and the second includes the ZBTB21 (previously ZNF295) gene, highlighting the potential role of these genes in the pathogenesis of CHD in DS. We propose that the genetic architecture of the CHD risk of DS is complex and includes trisomy 21, and SNP and CNV variations in chromosome 21. In addition, a yetunidentified genetic variation in the rest of the genome may contribute to this complex genetic architecture. © 2013, Published by Cold Spring Harbor Laboratory Press

    A novel melanocortin-4 receptor mutation MC4R-P272L associated with severe obesity has increased propensity to be ubiquitinated in the ER in the face of correct folding

    Get PDF
    Heterozygous mutations in the melanocortin-4 receptor (MC4R) gene represent the most frequent cause of monogenic obesity in humans. MC4R mutation analysis in a cohort of 77 children with morbid obesity identified previously unreported heterozygous mutations (P272L, N74I) in two patients inherited from their obese mothers. A rare polymorphism (I251L, allelic frequency: 1/100) reported to protect against obesity was found in another obese patient. When expressed in neuronal cells, the cell surface abundance of wild-type MC4R and of the N74I and I251L variants and the cAMP generated by these receptors in response to exposure to the agonist, α-MSH, were not different. Conversely, MC4R P272L was retained in the endoplasmic reticulum and had reduced cell surface expression and signaling (by ≈3-fold). The chemical chaperone PBA, which promotes protein folding of wild-type MC4R, had minimal effects on the distribution and signaling of the P272L variant. In contrast, incubation with UBE-41, a specific inhibitor of ubiquitin activating enzyme E1, inhibited ubiquitination of MC4R P272L and increased its cell surface expression and signaling to similar levels as wild-type MC4R. UBE41 had much less profound effects on MC4R I316S, another obesity-linked MC4R variant trapped in the ER. These data suggest that P272L is retained in the ER by a propensity to be ubiquitinated in the face of correct folding, which is only minimally shared by MC4R I316S. Thus, studies that combine clinical screening of obese patients and investigation of the functional defects of the obesity-linked MC4R variants can identify specific ways to correct these defects and are the first steps towards personalized medicineThis work has been funded by Fondo de Investigación Sanitaria (PI09/91060, PI10/02512, PI01/00747), CIBERobn Instituto de Salud Carlos III (ISCIII), Fundación Mutua Madrileña (AP2561/2008), Fundación Endocrinología y Nutrición, the National Institutes of Health (R01DK080424 to GB), and the Arkansas Tobacco Settlement (to GB). CS-J and GAM-M were recipients of fellowships from ISCIII (FI08/00365 and CM05/00100, respectively)

    Heterozygous rare genetic variants in non-syndromic early-onset obesity

    Get PDF
    Data de publicació electrònica: 29-03-2019BACKGROUND: Obesity is a very heterogeneous disorder at both the clinical and molecular levels and with high heritability. Several monogenic forms and genes with strong effects have been identified for non-syndromic severe obesity. Novel therapeutic interventions are in development for some genetic forms, emphasizing the importance of determining genetic contributions. OBJECTIVE: We aimed to define the contribution of rare single-nucleotide genetic variants (RSVs) in candidate genes to non-syndromic severe early-onset obesity (EOO; body mass index (BMI) >+3 standard deviation score, <3 years). METHODS: Using a pooled DNA-sequencing approach, we screened for RSVs in 15 obesity candidate genes in a series of 463 EOO patients and 480 controls. We also analysed exome data from 293 EOO patients from the "Viva la Familia" (VLF) study as a replication dataset. RESULTS: Likely or known pathogenic RSVs were identified in 23 patients (5.0%), with 7 of the 15 genes (BDNF, FTO, MC3R, MC4R, NEGR1, PPARG and SIM1) harbouring RSVs only in cases (3.67%) and none in controls. All were heterozygous changes, either de novo (one in BDNF) or inherited from obese parents (seven maternal, three paternal), and no individual carried more than one variant. Results were replicated in the VLF study, where 4.10% of probands carried RSVs in the overrepresented genes. RSVs in five genes were either absent (LEP) or more common in controls than in cases (ADRB3, LEPR, PCSK1 and PCSK2) in both obese datasets. CONCLUSIONS: Heterozygous RSVs in several candidate genes of the melanocortin pathway are found in ~5.0% patients with EOO. These results support the clinical utility of genetic testing to identify patients who might benefit from targeted therapeutic intervention.JA was funded by the Spanish Ministry of Health (FIS-PI13/02195 and PI16/00485, co-funded by FEDER), the Fundación de Endocrinología y Nutrición and the “Centro de Investigación Biomédica en Red” for obesity and nutrition (CIBEROBN) of the Instituto de Salud Carlos III, Spain. LAP-J was funded by the Spanish Ministry of Health (FIS-PI1302481, co-funded by FEDER), the Generalitat de Catalunya (2014SRG1468), the Institució Catalana de Recerca i Estudis Avançats (ICREA Academia programme), the Spanish Ministry of Economy and Competiveness “Programa de Excelencia María de Maeztu” (MDM-2014-0370) and the Centro de Investigación Biomédica en Red for rare diseases (CIBERER) of the Instituto de Salud Carlos III, Spain. JAC was funded by grants from the Spanish Ministry of Science and Innovation (BFU2017-82565-C21-R2). We would like to thank Francisca Díaz and Sandra Canelles for their excellent technical assistance
    corecore